3.618 \(\int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx\)

Optimal. Leaf size=487 \[ -\frac {\sqrt {a+b} (2 A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b^2 d \sqrt {\sec (c+d x)}}+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \sqrt {a+b \cos (c+d x)}}+\frac {B \sin (c+d x)}{d \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {B \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d \sqrt {\sec (c+d x)}}-\frac {B (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a b d \sqrt {\sec (c+d x)}} \]

[Out]

B*sin(d*x+c)/d/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)+a*B*sin(d*x+c)*sec(d*x+c)^(1/2)/b/d/(a+b*cos(d*x+c))^(1
/2)-(a-b)*B*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+
b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d/sec(d*x+c)^(1/2)
+B*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*
cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/sec(d*x+c)^(1/2)-(2*A*b-B*a
)*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b
)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.27, antiderivative size = 487, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {2961, 3003, 3051, 2809, 2993, 2998, 2816, 2994} \[ -\frac {\sqrt {a+b} (2 A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b^2 d \sqrt {\sec (c+d x)}}+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \sqrt {a+b \cos (c+d x)}}+\frac {B \sin (c+d x)}{d \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {B \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d \sqrt {\sec (c+d x)}}-\frac {B (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a b d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

-(((a - b)*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b
]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(
a - b)])/(a*b*d*Sqrt[Sec[c + d*x]])) + (Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a
+ b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*
Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b*d*Sqrt[Sec[c + d*x]]) - (Sqrt[a + b]*(2*A*b - a*B)*Sqrt[Cos[c + d*x]]
*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a +
b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b^2*d*Sqrt[Sec[c + d*
x]]) + (B*Sin[c + d*x])/(d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (a*B*Sqrt[Sec[c + d*x]]*Sin[c + d*x]
)/(b*d*Sqrt[a + b*Cos[c + d*x]])

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2961

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Sin[e + f*x])^m*(
c + d*Sin[e + f*x])^n)/(g*Sin[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 2993

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)])^(3/2)), x_Symbol] :> Simp[(2*(A*b - a*B)*Cos[e + f*x])/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[
d*Sin[e + f*x]]), x] + Dist[d/(a^2 - b^2), Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x]
]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3003

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n)/
(f*(2*n + 3)), x] + Dist[1/(2*n + 3), Int[((c + d*Sin[e + f*x])^(n - 1)*Simp[a*A*c*(2*n + 3) + B*(b*c + 2*a*d*
n) + (B*(a*c + b*d)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n + 3) + B*(a*d + 2*b*c*n))*
Sin[e + f*x]^2, x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0
] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[n^2, 1/4]

Rule 3051

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x
_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a
 + b*Sin[e + f*x]], x], x] + Dist[1/b, Int[(A*b + (b*B - a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[d
*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {B \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {1}{2} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a B+2 a A \cos (c+d x)+(2 A b-a B) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx\\ &=\frac {B \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a b B+(2 a A b-a (2 A b-a B)) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx}{2 b}+\frac {\left ((2 A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 b}\\ &=-\frac {\sqrt {a+b} (2 A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}+\frac {B \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {a B \sqrt {\sec (c+d x)} \sin (c+d x)}{b d \sqrt {a+b \cos (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a b^2 B-a (2 a A b-a (2 A b-a B))+\left (a^2 b B-b (2 a A b-a (2 A b-a B))\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b \left (a^2-b^2\right )}\\ &=-\frac {\sqrt {a+b} (2 A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}+\frac {B \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {a B \sqrt {\sec (c+d x)} \sin (c+d x)}{b d \sqrt {a+b \cos (c+d x)}}+\frac {\left (a B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{2 b}-\frac {\left (a B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b}\\ &=-\frac {(a-b) \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} (2 A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}+\frac {B \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {a B \sqrt {\sec (c+d x)} \sin (c+d x)}{b d \sqrt {a+b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 18.43, size = 1091, normalized size = 2.24 \[ \frac {\sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}} \left (-a \sqrt {\frac {a-b}{a+b}} B \tan ^5\left (\frac {1}{2} (c+d x)\right )+b \sqrt {\frac {a-b}{a+b}} B \tan ^5\left (\frac {1}{2} (c+d x)\right )-2 b \sqrt {\frac {a-b}{a+b}} B \tan ^3\left (\frac {1}{2} (c+d x)\right )-4 i A b \Pi \left (\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}} \tan ^2\left (\frac {1}{2} (c+d x)\right )+2 i a B \Pi \left (\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}} \tan ^2\left (\frac {1}{2} (c+d x)\right )+a \sqrt {\frac {a-b}{a+b}} B \tan \left (\frac {1}{2} (c+d x)\right )+b \sqrt {\frac {a-b}{a+b}} B \tan \left (\frac {1}{2} (c+d x)\right )+i (a-b) B E\left (i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}}+2 i (A b-a B) F\left (i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}}-4 i A b \Pi \left (\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}}+2 i a B \Pi \left (\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}}\right )}{b \sqrt {\frac {a-b}{a+b}} d \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )-1\right ) \sqrt {\frac {\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (b \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )-1\right )-a \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

(Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]*(a*Sqrt[(a - b)/(a + b)]
*B*Tan[(c + d*x)/2] + b*Sqrt[(a - b)/(a + b)]*B*Tan[(c + d*x)/2] - 2*b*Sqrt[(a - b)/(a + b)]*B*Tan[(c + d*x)/2
]^3 - a*Sqrt[(a - b)/(a + b)]*B*Tan[(c + d*x)/2]^5 + b*Sqrt[(a - b)/(a + b)]*B*Tan[(c + d*x)/2]^5 - (4*I)*A*b*
EllipticPi[(a + b)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - Ta
n[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*a*B*EllipticPi[(
a + b)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - Tan[(c + d*x)/
2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - (4*I)*A*b*EllipticPi[(a + b)/(a -
b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c
+ d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*a*B*EllipticPi[(a + b
)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Tan[(c + d*x)/2]^2*Sqrt[1 -
Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + I*(a - b)*B*Elliptic
E[I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan
[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*(A*b - a*B)*Ellip
ticF[I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 +
Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)]))/(b*Sqrt[(a - b)/(a +
 b)]*d*(-1 + Tan[(c + d*x)/2]^2)*Sqrt[(1 + Tan[(c + d*x)/2]^2)/(1 - Tan[(c + d*x)/2]^2)]*(b*(-1 + Tan[(c + d*x
)/2]^2) - a*(1 + Tan[(c + d*x)/2]^2)))

________________________________________________________________________________________

fricas [F]  time = 1.27, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 0.46, size = 1004, normalized size = 2.06 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-1/d*(4*A*sin(d*x+c)*cos(d*x+c)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*b-2*A*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a
+b))^(1/2))*b-2*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c
),-1,(-(a-b)/(a+b))^(1/2))*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a+B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a
-b)/(a+b))^(1/2))*a+B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))
/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b+4*A*sin(d*x+c)*((a+b*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(
a+b))^(1/2))*b-2*A*sin(d*x+c)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b-2*B*sin(d*x+c)*EllipticPi((-1+cos(d*x+c))/sin(d*x
+c),-1,(-(a-b)/(a+b))^(1/2))*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a
+B*sin(d*x+c)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+co
s(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a+B*sin(d*x+c)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b+B*cos(d*x+c)^3*b+B*co
s(d*x+c)^2*a-b*B*cos(d*x+c)^2-B*cos(d*x+c)*a)*(1/cos(d*x+c))^(1/2)/(a+b*cos(d*x+c))^(1/2)/sin(d*x+c)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2)),x)

[Out]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B \cos {\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))/(sqrt(a + b*cos(c + d*x))*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________